Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(2): 1021-1029, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269041

RESUMO

The synthesis of amide bonds is one of the most frequently performed reactions in pharmaceutical synthesis, but the requirement for stoichiometric quantities of coupling agents and activated substrates in established methods has prompted interest in biocatalytic alternatives. Amide Bond Synthetases (ABSs) actively catalyze both the ATP-dependent adenylation of carboxylic acid substrates and their subsequent amidation using an amine nucleophile, both within the active site of the enzyme, enabling the use of only a small excess of the amine partner. We have assessed the ability of an ABS from Streptoalloteichus hindustanus (ShABS) to couple a range of carboxylic acid substrates and amines to form amine products. ShABS displayed superior activity to a previously studied ABS, McbA, and a remarkable complementary substrate specificity that included the enantioselective formation of a library of amides from racemic acid and amine coupling partners. The X-ray crystallographic structure of ShABS has permitted mutational mapping of the carboxylic acid and amine binding sites, revealing key roles for L207 and F246 in determining the enantioselectivity of the enzyme with respect to chiral acid and amine substrates. ShABS was applied to the synthesis of pharmaceutical amides, including ilepcimide, lazabemide, trimethobenzamide, and cinepazide, the last with 99% conversion and 95% isolated yield. These findings provide a blueprint for enabling a contemporary pharmaceutical synthesis of one of the most significant classes of small molecule drugs using biocatalysis.

2.
Biochem Soc Trans ; 50(6): 1555-1567, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382942

RESUMO

The study of protein structure, dynamics and function by NMR spectroscopy commonly requires samples that have been enriched ('labelled') with the stable isotopes 13C and/or 15N. The standard approach is to uniformly label a protein with one or both of these nuclei such that all C and/or N sites are in principle 'NMR-visible'. NMR spectra of uniformly labelled proteins can be highly complicated and suffer from signal overlap. Moreover, as molecular size increases the linewidths of NMR signals broaden, which decreases sensitivity and causes further spectral congestion. Both effects can limit the type and quality of information available from NMR data. Problems associated with signal overlap and signal broadening can often be alleviated though the use of alternative, non-uniform isotopic labelling patterns. Specific isotopic labelling 'turns on' signals at selected sites while the rest of the protein is NMR-invisible. Conversely, specific isotopic unlabelling (also called 'reverse' labelling) 'turns off' selected signals while the rest of the protein remains NMR-visible. Both approaches can simplify NMR spectra, improve sensitivity, facilitate resonance assignment and permit a range of different NMR strategies when combined with other labelling tools and NMR experiments. Here, we review methods for producing proteins with enrichment of stable NMR-visible isotopes, with particular focus on residue-specific labelling and reverse labelling using Escherichia coli expression systems. We also explore how these approaches can aid NMR studies of proteins.


Assuntos
Escherichia coli , Proteínas , Ressonância Magnética Nuclear Biomolecular , Isótopos de Nitrogênio , Isótopos de Carbono , Marcação por Isótopo/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química
3.
ACS Catal ; 10(8): 4659-4663, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32337091

RESUMO

The biocatalytic synthesis of amides from carboxylic acids and primary amines in aqueous media can be achieved using the ATP-dependent amide bond synthetase McbA, via an adenylate intermediate, using only 1.5 equiv of the amine nucleophile. Following earlier studies that characterized the broad carboxylic acid specificity of McbA, we now show that, in addition to the natural amine substrate 2-phenylethylamine, a range of simple aliphatic amines, including methylamine, butylamine, and hexylamine, and propargylamine are coupled efficiently to the native carboxylic acid substrate 1-acetyl-9H-ß-carboline-3-carboxylic acid by the enzyme, to give amide products with up to >99% conversion. The structure of wild-type McbA in its amidation conformation, coupled with modeling and mutational studies, reveal an amine access tunnel and a possible role for residue D201 in amine activation. Amide couplings were slower with anilines and alicyclic secondary amines such as pyrrolidine and piperidine. The broader substrate specificity of McbA was exploited in the synthesis of the monoamine oxidase A inhibitor moclobemide, through the reaction of 4-chlorobenzoic acid with 1.5 equiv of 4-(2-aminoethyl)morpholine, and utilizing polyphosphate kinases SmPPK and AjPPK in the presence of polyphosphoric acid and 0.1 equiv of ATP, required for recycling of the cofactor.

4.
J Biochem ; 166(1): 51-66, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759214

RESUMO

Cytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalysed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a Gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyses the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly active whole-cell Escherichia coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l-1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s' role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.


Assuntos
Arthrobacter/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Papaverina/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/análise , Estrutura Molecular , Oxirredução , Papaverina/química
5.
Angew Chem Int Ed Engl ; 57(36): 11584-11588, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30035356

RESUMO

Amide bond formation is one of the most important reactions in pharmaceutical synthetic chemistry. The development of sustainable methods for amide bond formation, including those that are catalyzed by enzymes, is therefore of significant interest. The ATP-dependent amide bond synthetase (ABS) enzyme McbA, from Marinactinospora thermotolerans, catalyzes the formation of amides as part of the biosynthetic pathway towards the marinacarboline secondary metabolites. The reaction proceeds via an adenylate intermediate, with both adenylation and amidation steps catalyzed within one active site. In this study, McbA was applied to the synthesis of pharmaceutical-type amides from a range of aryl carboxylic acids with partner amines provided at 1-5 molar equivalents. The structure of McbA revealed the structural determinants of aryl acid substrate tolerance and differences in conformation associated with the two half reactions catalyzed. The catalytic performance of McbA, coupled with the structure, suggest that this and other ABS enzymes may be engineered for applications in the sustainable synthesis of pharmaceutically relevant (chiral) amides.


Assuntos
Complexos de ATP Sintetase/metabolismo , Actinomycetales/metabolismo , Amidas/metabolismo , Proteínas de Bactérias/metabolismo , Carbolinas/metabolismo , Complexos de ATP Sintetase/química , Actinomycetales/química , Actinomycetales/enzimologia , Amidas/química , Proteínas de Bactérias/química , Vias Biossintéticas , Carbolinas/química , Domínio Catalítico , Modelos Moleculares , Metabolismo Secundário , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...